A-38

Magnetoelastics of a Spin Liquid: X-ray Single-crystal Diffraction Studies of Tb₂Ti₂O₇ in Pulsed Magnetic Fields

J. P. C. Ruff^{1, 2}, Z. Islam², J. P. Clancy¹, K. A. Ross¹, H. Nojiri³, Y. H. Matsuda⁴, H. A. Dabkowska¹, A. D. Dabkowski¹, and B. D. Gaulin¹

²Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439

High-resolution single-crystal x-ray diffraction measurements of the frustrated pyrochlore magnet $Tb_2Ti_2O_7$ have been performed using a novel low-temperature pulsed-magnet system. This unique instrument allows for a thorough characterization of structural degrees of freedom to temperatures as low as 4.4K and in applied magnetic fields as high as 30 tesla. We show that $Tb_2Ti_2O_7$ manifests a number of intriguing structural effects under the application of magnetic fields, including strongly anisotropic giant magnetostriction, a restoration of local symmetry in low magnetic fields, and ultimately a structural phase transition in high magnetic fields. A treatment of spin-liquid physics in this compound based on spin degrees of freedom alone seems simplistic as these results show that magnetoelastic coupling plays a significant role in $Tb_2Ti_2O_7$ at low temperatures.

¹Dept. of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 Canada

³Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

⁴Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, Japan